
Chapter 3

Parametric Curves

This chapter is concerned with the parametric approach to curves. The definition of a
parametric curve is defined in Section 1 where several examples explaining how it differs
from a geometric one are present. In Section 2 we introduce the arc-length for para-
metric curve and also the arc-length parametrization. In Section 3 two most common
parametrization, namely, graphs and polar forms, are discussed. In Section 4 the signed
curvature and curvature of a plane curve are defined using the arc-length parametrization.
Finally, we illustrate the interplay between different parametrization, Kepler’s First Law
on planetary motion is derived In Section 5.

3.1 Parametric Curves

In this section we present an approach to geometric objects in Rn different from the zero
set approach in the previous chapter. In this parametric approach, geometric objects such
as curves and surfaces are regarded as mappings into Rn. We will exclusively deal with
curves here even though the idea extends to surfaces and beyond. In the case of curves
it is partly motivated by physics where a curve is regarded as the trajectory of a particle
in motion.

A continuous map γ from an interval I, open or closed, to Rn is called a parametric
curve. By a continuous map we mean each component of the map

γ(t) = (γ1(t), γ2(t), · · · , γn(t)) : I → Rn ,

is continuous on I. It is called differentiable or continuously differentiable according to
whether γ′j, j = 1, 2, · · · , n, exist or are continuous. At this point a curve is not different
from a continuous vector-valued function. An essential difference comes in when we define
a regular curve. Indeed, a parametric curve γ is a regular parametric curve or simply
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2 CHAPTER 3. PARAMETRIC CURVES

a regular curve if it is continuously differentiable and |γ ′(t)| > 0 for all t ∈ I. Later
we will encounter some parametric curve whose tangent does not vanish except at finitely
many points. Strictly speaking these are not regular curves. However, they share many
properties with regular curves. Note that

γ ′(t) = (γ′1(t), γ
′
2(t), · · · , γ′n(t)) ,

and

|γ ′(t)| =
√
γ

′2
1 (t) + γ

′2
2 (t) + · · ·+ γ′2

n (t) .

Example 3.1. Determine which of the following parametric curves defines a regular curve
in the plane:

(a) γ(t) = (t2 + 1, t sin t) , t ∈ (1, π) ,

(b) η(t) = (t2 + 1, t sin t) , t ∈ [−1, , π] ,

(c) c(θ) = (2 cos θ, 3 sin θ) , θ ∈ [0, 4π] ,

(d) ξ(z) = (sin z−1, 3z + 1) , ξ(0) = 0, z ∈ [0,∞) .

(a) γ ′(t) = (2t, sin t+ t cos t) and

|γ ′(t)| =
√

4t2 + (sin t+ t cos t)2 ≥ 2t > 0 , ∀t ∈ (1, π) .

So γ is a regular curve.

(b) η and γ share the same formula but on different domains. They are different curves.
At t = 0, |η′(0)| = 0, so it is not a regular curve.

(c) c′(θ) = (−2 sin θ, 3 cos θ), and

|c′(θ)| =
√

4 sin2 θ + 9 cos2 θ ≥
√

4 sin2 θ + 4 cos2 θ ≥ 2,

so c is a regular curve. In fact, from

c21(θ)

4
+
c22(θ)

9
= 1

we see that the image of the parametric curve is an ellipse. As θ runs from 0 to 4π, the
trajectory covers the ellipse twice.

(d) Observe that the map z 7→ sin z−1 does not have a limit at z = 0, ξ is not a continuous
map. Therefore, it is not a parametric curve, let alone a regular one. Keep in mind that
a parametric curve is always continuous in each of its components.



3.1. PARAMETRIC CURVES 3

It is natural to call γ ′(t) the tangent or tangent vector of the parametric curve γ
at t and view it as a vector based at γ(t). The tangent line of γ at γ(t0) is the straight
line passing through γ(t0) along the direction determined by the vector γ ′(t0), that is, it
is given by

{γ(t0) + tγ ′(t0) : t ∈ R} .
(Here t0 indicates the fixed time and t is the variable for the tangent line.)

When γ describes the motion of a particle in the duration from time a to b, γ(t) is the
location of the particle at time t. It is usually called the position vector. Accordingly
the tangent vector is called the velocity or velocity vector. Its magnitude |γ ′(t)| is called
the speed at time t. It describes how fast the particle is moving at this instant. The
unit vector γ ′(t)/|γ ′(t)| points to the direction of the motion at this instant. Finally, the
second derivative γ ′′(t) is called the acceleration at t. To use t to denote the parameter
was motivated from this context and is adopted elsewhere even it no longer carries the
meaning of time.

Example 3.2. Consider the map γ : R → Rn defined by γ(t) = p + tξ where p and
ξ 6= (0, · · · , 0) ∈ Rn are given. Each component is a linear function and clearly differen-
tiable up to any order. Its velocity, speed and acceleration are all independent of time
and given by ξ, |ξ| and 0 respectively. One should be cautious about the subtle change
of point of view : Now the straight line is regarded as a map from R to Rn. The straight
line previously defined is actually the image of this map.

The followings are some commonly used parametric equations for ellipses, hyperbolas
and parabolas:

• x2

a2
+
y2

b2
= 1 ; x = a cos θ, y = b sin θ, θ ∈ [0, 2π) , a, b > 0 .

• x2

a2
− y2

b2
= 1 ; x = a cosh θ, y = ±b sinh θ, θ ∈ (−∞,∞) , a, b > 0 .

• y = ax2 + bx+ c ; y = at2 + bt+ c, x = t, t ∈ (−∞,∞) , a, b, c ∈ R .

Other parametric equations are also available, for instance, for the hyperbola one may
use

x =
a

2

(
t+

1

t

)
, y =

b

2

(
t− 1

t

)
, t ∈ (0,∞) or t ∈ (−∞, 0) .

Example 3.3. A bee is flying along the trajectory described by the helix

(x(t), y(t), z(t)) = (cos t, sin t, t) , t ∈ [0,∞) .
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(a) Find its velocity, speed and acceleration at t = π/2 and at π.

(b) Find its tangent line at t = π/2.

(a) Let γ be this trajectory. Clearly it is a regular parametric curve in R3. We have

γ ′(t) = (− sin t, cos t, 1) , γ ′′(t) = (− cos t,− sin t, 0) .

So its velocity and acceleration at t = π/2, π are given respectively by

γ ′
(π

2

)
= (−1, 0, 1) , γ ′′

(π
2

)
= (0,−1, 0) ,

and
γ ′(π) = (0,−1, 1) , γ ′′(π) = (1, 0, 0) .

We can also determine its speed

|γ ′(t)| =
√

(− sin t)2 + cos2 t+ 1 =
√

2 ,

which is independent of time. The bee is flying at constant speed.

(b) The tangent line passing through γ(π/2) = (0, 1, π/2) is given by(
0, 1,

π

2

)
+ (−1, 0, 1)t , t ∈ R.

Example 3.4. Find all tangent lines of the ellipse

x2 +
y2

9
= 1

that passes through the point (1,−6). Choose the parametrization of the ellipse to be

x = cos t, y = 3 sin t, t ∈ [0, 2π) .

As t runs from 0 to 2π, the particle travels from (1, 0) along the counterclockwise direction
and back to (1, 0) at t = 2π. The tangent vector at (x, y) is given by

(x′, y′) = (− sin t, 3 cos t),

which shows this is a regular curve. The tangent line passing through (x, y) is given by

(cos t0, 3 sin t0) + t(− sin t0, 3 cos t0), t ∈ R .

In order the line passing through (1,−6), we require there is some t so that (cos t0, 3 sin t0)+
t(− sin t0, 3 cos t0) = (1,−6), that is,

cos t0 − sin t0 t = 1, 3 sin t0 + 3 cos t0 t = −6.
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This system is readily solved to give

cos t0 − 2 sin t0 = 1, t = −2 cos t0 − sin t0 .

Using the compound angle formula, the first equation can be written as

cos(t0 + τ) =

√
5

5
,

where τ satisfies

cos τ =

√
5

5
, sin τ =

2
√

5

5
, τ ∈ (0,

π

4
) .

There are two t1, t2’s lying respectively in t1 ∈ (0, π/2) and t2 ∈ (3π/2, 2π) satisfying

cos t1 = cos t2 =
√
5
5

. Indeed, we conclude that both t0 = 0 and t0 = 2π − 2τ satisfy
the requirement. Then there are exactly two tangent lines of the ellipse passing through
(1,−6), one emitting from (1, 0) and the other from (cos(2τ),−3 sin(2τ)).

Newton’s second law asserts that ma = F where m is the mass of the particle, a its
acceleration and F the external force. The last two are 3-vectors. In case the force only
depends on the position of the particle which happens, for instance, under the influence
of a gravitational field, the time t appears as the natural parameter of the motion. The
law can be written as a second order differential equation

m
d2r

dt2
= F (r) ,

where r(t) = (x(t), y(t), z(t)) is the position vector.

Example 3.5. Determine the motion of the projectile with initial position (x0, y0, z0) and
initial velocity (u0, v0, w0). The motion is governed by the gravity only, so the second law
reads as

m
d2r

dt2
= −mge3 , r(t) = (x(t), y(t), z(t)) .

Looking at the components separately, we have

m
d2x

dt2
= 0 ,

m
d2y

dt2
= 0 ,

m
d2z

dt2
= −mg .

All three equations are of the form f ′′(t) = c for some constant c. A single integration
yields f ′(t) = ct+c1 for some constant c1 and a further integration yields f(t) = c

2
t2+c1t+
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c2 for another constant c2. Therefore, the general solution of this system of differentiable
equations is given by

r(t) = (x(t), y(t), z(t)) =

(
a+ bt, c+ dt, e+ ft− 1

2
gt2
)
,

for arbitrary constants a, b, c, d, e, f . Plugging in t = 0, we get (a, c, e) = (x0, y0, z0).
Plugging t = 0 in r′(t) we get (b, c, f) = (u0, v0, w0). Therefore, the motion of the
projectile is given by

r(t) = (x(t), y(t), z(t)) =

(
x0 + u0t, y0 + v0t, z0 + w0t−

1

2
gt2
)
.

Once the initial position and velocity are known, its position and velocity in any time is
completely determined no matter it is in the future or back to the ancient times. This is
the deterministic feature of Newton’s world.

To end this section, let us once again point out that a parametric curve is different
from a geometric curve. Different parametric curves could have the same image, that is,
they represent the same geometric curve, so each one of them carries additional informa-
tion.

Example 3.6. Describe the parametric curves defined by, for a, b > 0,

(a) γ1(t) = (a cos t, b sin t) , t ∈ [0, 2π] ,

(b) γ2(t) = (a cos t2, b sin t2) , t ∈ [0,
√

2π] ,

(c) γ3(t) = (a cos t,−b sin t) , t ∈ [0, 2π] ,

(d) γ4(t) = (a cos t, b sin t) , t ∈ [0, 4π]

The image of all these four parametric curves have the same image, namely, the ellipse
given by {

(x, y) :
x2

a2
+
y2

b2
= 1

}
.

It shows that a parametric curve contains more information such as orientation, velocity,
and multiplicity than a geometric curve does. For instance, the curve in (a) describes
the motion of a particle moving along the ellipse starting from (a, 0) and going back to
this point at t = 2π in the counterclockwise direction. Its velocity at time t is given by
(a2 sin2 t+b2 cos2 t)1/2. The second curve moves similar to the first curve, but not uniform
in speed: 2t(a2 sin2 t+ b2 cos2 t)1/2. The third curve describes the motion going from (a, 0)
to itself in clockwise direction. In the fourth curve the particle travels the ellipse twice
counterclockwisely as t goes from 0 to 4π. �
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3.2 The Arc-Length

In this section we define the length of a parametric curve. In fact, let γ : [a, b]→ Rn be
a regular parametric curve. As t runs from a to b, γ(t) goes from γ(a) to γ(b) and never
turns back. Introducing partition points a = t1 < t2 < · · · < tm = b, the sums

m−1∑
j=1

|γ(tj+1)− γ(tj)|

give a good approximation to the length of the curve as the partition getting refined. By
the mean-value theorem the sums beocme

m−1∑
j=1

|γ ′(t∗j)|(tj+1 − tj)

for some mean value t∗j ∈ (tj, tj+1) . As tj+1 − tj → 0, these sums tend to

ˆ b

a

|γ ′(t)|dt .

It is reasonable to define the length of the parametric curve γ to be

L =

ˆ b

a

|γ ′(t)|dt .

Example 3.7. Find the length of the following two parametric curves:

(a) γ(t) = (cos3 t, sin3 t) , t ∈ [0, π/2] .

(b) ξ(t) = (cos t, sin t, t) , t ∈ [0, T ] .

For (a), we have γ ′(t) = (−3 cos2 t sin t, 3 sin2 t cos t) and

|γ ′(t)| =
√

9 cos4 t sin2 t+ 9 sin4 t cos2 t = 3 cos t sin t .

The length over [0, π/2] is given by

ˆ π/2

0

|γ ′(t)|dt =

ˆ π/2

0

3 cos t sin tdt

=
3

2
.
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We remark that the curve γ is not regular as its velocity vanishes at 0 and π/2. However,
this does no harm as we could replace the endpoints by some a, b, a < b, in (0, π/2) and
then let a→ 0+ and b→ π/2−. For (b), we have

|ξ′(t)| =
√

(− sin t)2 + cos2 t+ 1 =
√

2 .

Therefore, the length over [0, T ] is

ˆ T

0

|ξ′(t)|dt =

ˆ T

0

√
2dt =

√
2T .

In Section 3.1 we have seen that the same geometric curve can be described by many
different parametric curves. In this section we will show that there is an intrinsic one that
is particularly useful in many situations. This is the arc-length parametrization.

We need some preparation. Let γ be a regular parametric curve on [a, b] and ϕ :
[c, d] → [a, b] is continuously differentiable function satisfying ϕ′(t) > 0. Then γ̃(t) =
γ(ϕ(t)) is a regular parametric curve from [c, d] to Rn whose image is the same as the
image of γ. This new parametric curve is called a reparametrization of γ. In the fol-
lowing we would like to show that every regular curve admits a special reparametrization
whose speed is constant.

Note that |γ ′(t)| is integrable as it is a continuous function on [a, b] by assumption. To
show that the notion of the length is a geometric one we will show that it is independent
of reparametrization.

Let us recall the change of variables formula in calculus. Let F : [a, b] → R and
ϕ : [c, d]→ [a, b] be continuously differentiable. We have the change of variable formula:

ˆ t

c

F ′(ϕ(t))ϕ′(t)dt =

ˆ ϕ(t)

ϕ(c)

F ′(z)dz .

(Here is the proof: by the Chain Rule,

dF ◦ ϕ
dt

= F ′(ϕ(t))ϕ′(t) .

Integrating this relation and using the fundamental theorem of calculus,

ˆ t

c

F ′(ϕ(t))ϕ′(t)dt = F (ϕ(t))− F (ϕ(c)) .
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On the other hand, we have

ˆ ϕ(t)

ϕ(c)

F ′(z)dz = F (ϕ(t))− F (ϕ(c)) ,

and the formula follows by combining these two relations.)

Theorem 3.1. Let γ̃(t) = γ(ϕ(t)) be a reparametrization of γ on [c, d] satisfying ϕ(c) =
a, ϕ(d) = b. Then ˆ d

c

|γ̃ ′(t)|dt =

ˆ b

a

|γ ′(t)|dt .

Proof. Taking F to be γ̃ in the change of variables formula,

ˆ d

c

|γ̃ ′(t)|dt =

ˆ d

c

|γ ′(ϕ(t))|ϕ′(t)dt

=

ˆ ϕ(d)

ϕ(c)

|γ ′(z)|dz

=

ˆ b

a

|γ ′(z)|dz ,

where the change of variables formula has been applied in the second equality.

The length map of a regular parametric curve γ is Λ : [a, b]→ [0, L], where

Λ(t) =

ˆ t

a

|γ ′(z)|dz.

It is strictly increasing and continuously differentiable. Its inverse map Φ is also contin-
uously differentiable and maps [0, L] to [a, b] such that Φ(Λ(t)) = t for all t ∈ [a, b] and
Λ(Φ(s)) = s for all s ∈ [0, L].

Theorem 3.2. For any regular parametric curve γ on [a, b], the reparametrization γ̃(s) ≡
γ(Φ(s)) defined on [0, L] satisfies

|γ̃ ′(s)| = 1 , ∀s ∈ [0, L] .

Proof. Letting t = Φ(s), we differentiate the relation Φ(Λ(t)) = t to get

dΦ

ds
(s)

dΛ

dt
(t) = 1.
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Now,

γ̃ ′(s) =
dγ ◦ Φ

ds
(s)

= γ ′(t)
dΦ

ds
(s)

= γ ′(t)
1

Λ′(t)

=
γ ′(t)

|γ ′(t)|
,

where in the last step we have used the definition of Λ. Therefore, |γ̃ ′(s)| = 1 for all s.

Now, suppose we have two regular curves γ1 and γ2 on [a, b] and [c, d] respectively
which satisfy γ1(a) = γ2(c) and γ1(b) = γ2(d), that is, their endpoints coincide. Since
both curves map their intervals of definition bijectively into its image, the composite
function ϕ(t) = γ−12 (γ1(t)) maps [a, b] to [c, d] with ϕ(a) = c and ϕ(b) = d. Using
|γ′i| > 0, i = 1, 2, it can be shown that ϕ′ > 0 on [a, b] and hence γ1(t) = γ2(ϕ(t)), that is,
γ1 is a reparametrization of γ2. Using these two theorems we know that no matter γ1 or
γ2 is used to obtain the arc-length parametrization, the result is the same.

Example 3.8. Consider two parametrizations of the circle of radius R centered at the
origin

(a)
γ1(t) = (R cos t2, R sin t2) , t ∈ [0, (2π)1/2] ,

(b)
γ2(t) = (R cos t3, R sin t3) , t ∈ [0, (2π)1/3] .

Please find their arc-length reparametrization formula.

Both parametric curves describe the circle traveling once in the counterclockwise di-
rection. Now,

Λ1(t) =

ˆ t

0

|γ ′1(z)|dz

=

ˆ t

0

√
4R2z2 sin2 z2 + 4R2z2 cos2 z2dz

=

ˆ t

0

2Rzdz

= Rt2 ,
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so

L1 =

ˆ √2π
0

|γ ′1(z)|dz = 2πR .

The inverse to Λ1 is given by Φ1(s) = (s/R)1/2. Therefor, the arc-length parametric curve
is given by

γ̃1(s) = γ1(Φ1(s)) = (R cos
s

R
,R sin

s

R
) , s ∈ [0, 2πR] .

On the other hand,

Λ2(t) =

ˆ t

0

|γ ′2(z)|dz

=

ˆ t

0

√
9Rz4 sin2 z3 + 9Rz4 cos2 z3dz

=

ˆ t

0

3Rz2dz

= Rt3 ,

so

L2 =

ˆ (2π)1/3

0

|γ ′2(z)|dz = 2πR .

The inverse to Λ2 is given by Φ2(s) = (s/R)1/3. Therefore, the arc-length parametric
curve is given by

γ̃2(s) = γ2(Φ2(s)) = (R cos
s

R
,R sin

s

R
) , s ∈ [0, 2πR] .

We see that γ̃1 and γ̃2 are equal, in other words, both parametric curves lead to the same
arc-length parametric curve.

A side remark. In this example both γ ′1(0) and γ ′2(0) are equal to zero, so strictly
speaking they are not regular curves. However, we could first restrict to [t0, 2π], t0 > 0,
and then let t0 ↓ 0 to get the result.

Example 3.9. Consider the regular curve

c(t) = (a cos t, b sin t) , t ∈ [0, 2π] .

The curve describes an ellipse traveling in counterclockwise direction. Its length function
is given by

Λ(t) =

ˆ t

0

|γ ′(z)|dz

=

ˆ t

0

√
a2 sin2 z + b2 cos2 zdz

=

ˆ t

0

√
a2 + (b2 − a2) cos2 zdz ,
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which is an elliptic integral. It is well-known that it cannot be integrated explicitly for
most a and b. This example demonstrates a drawback of the arc-length parametrization,
namely, it cannot have an explicit expression in many cases.

Given a regular curve γ on [a, b], it is always possible to define another regular curve
whose domain and image coincide with those of γ but moves in opposite direction. In fact,
the curve γ1(t) = γ(−t) defined on [−b,−a] has the same image with γ. Thus the curve
γ2(t) = γ1(t+b+a) defined on [a, b] is what we are after. Although these two curves share
the same image and their total length are equal, the length functions are different because
γ is measured starting from γ(a) while γ2 is measured from γ2(a) = γ(b). Furthermore,
letting p = γ(t1) = γ2(t2), we have γ ′(t1) = −γ ′(t2). That is, their tangents at the same
point are opposite to each other.

All in all, we have succeeded in showing that every regular curve admits a parametriza-
tion in which the tangent is always a unit vector. With further effort, one may even to
show there are exactly two non-equivalent arc-parametrization whose directions are op-
posite to each other. In any case, from now on it is free of cost to assume that a regular
curve is parametrized by arc-length. The same conclusion applies to those parametric
curves whose tangents do not change sign but could become zero at finitely many points.

3.3 Graphs and Polar Forms

In this section we examine two most common parametrization, namely, graphs and polar
forms.

Let f be a continuous function defined on some interval I. Its graph {(x, f(x)) : x ∈ I}
becomes a curve over I. It is natural to use x as the parameter to describe this curve:

x 7→ (x, f(x)) , x ∈ I .

Such parametrization is usually called the non-parametric form. From

|(x, f(x))′| = |(1, f ′(x))| =
√

1 + f ′2(x) > 0 ,

we see that it is always a regular curve whenever it is differentiable. In the non-parametric
form the tangent vector, length function, unit tangent, and normal are given respectively
by

(1, f ′(x)) , (the tangent vector)

L =

ˆ
I

√
1 + f ′2(z)dz , (the length)
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and

t =
(1, f ′(x))√
1 + f ′2(x)

, n =
(−f ′(x), 1)√

1 + f ′2(z)
, (the unit tangent and unit normal).

The tangent and the normal adapt to the right hand rule.

A disadvantage of non-parametric form is that in many cases the curve cannot be
written as the graph of some function. For example, the unit circle defined by the equation
x2 + y2 = 1 cannot be expressed as a single function over [−1, 1], instead it is the union
of two functions:

f1(x) =
√

1− x2 , f2(x) = −
√

1− x2 x ∈ [−1, 1] .

One may express in another way:

g1(y) =
√

1− y2 , g2(y) = −
√

1− y2 y ∈ [−1, 1] .

(In fact,

f ′1(x) =
−x√
1− x2

,

becomes unbounded at x = ±1. To obtain a regular non-parametric curve one must
restrict the interval [−1, 1] to a smaller one, resulting at least four functions are needed
to describe the circle.)

Example 3.10. Consider the parabola in the non-parametric form

f(x) = 3x2 − 5x+ 11 , x ∈ R .

Find its explicit arc-length function on the interval [5
6
, x] with x ≥ 5

6
.

Sol: The parametric curve describing the parabola is given by

γ(x) = (x, 3x2 − 5x+ 11) .

We have
γ ′(x) = (1, 6x− 5)

Then we know that arc-length is given by

L(x) =

ˆ x

5
6

√
1 + (6t− 5)2dt =

1

6

ˆ 6x−5

0

√
1 + z2dz.

Noting ˆ √
z2 + a2dz =

1

2

{
z
√
z2 + a2 + a2 ln

∣∣∣z +
√
z2 + a2

∣∣∣ }+ C,
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then we have

L(x) =
1

6

ˆ 6x−5

0

√
1 + z2dz

=
1

12

{
z
√
z2 + 1 + ln

∣∣∣z +
√
z2 + 1

∣∣∣ } ∣∣∣∣∣
6x−5

0

=
1

12

{
(6x− 5)

√
(6x− 5)2 + 1 + ln

∣∣∣6x− 5 +
√

(6x− 5)2 + 1
∣∣∣ } .

Another useful parametrization is the so-called polar forms. Recall that the polar
coordinates provides an alternative way to describe points on the plane other than the
cartesian coordinates. There are two parameters, the distance r and angle θ. The r-axis
(or initial ray) is a semi-infinite axis starting from a point (the origin O) and extending
to infinity. A point on the plane is specified by P (r, θ) where r is its distance from P to
O and θ ∈ [0, 2π), is measure from the r-axis to OP . To set up the conversion between
the polar coordinates and cartesian coordinates we identify the r-axis with the positive
x-axis. Then we have the relations

r =
√
x2 + y2, cos θ =

x√
x2 + y2

, sin θ =
y√

x2 + y2
, and tan−1 θ =

y

x
,

and
x = r cos θ , y = r sin θ .

Now a polar curve (or a curve in polar form) is described by a single polar equation
ρ = ρ(θ) where θ ranges over some interval I. More precisely, it means the parametric
curve is

θ 7→ ρ(θ)(cos θ, sin θ) .

Hence |ρ(θ)| is the distance of the curve to the origin. The tangent vector, length function,
unit tangent, normal and signed curvature are given respectively by

ρ(− sin θ, cos θ) + ρ′(cos θ, sin θ) , (the tangent vector)

L =

ˆ
I

√
ρ2(α) + ρ′2(α) dα , (the length)

t =
ρ(− sin θ, cos θ) + ρ′(cos θ, sin θ)

(ρ2 + ρ′2)1/2
, (the unit tangent)

and

n =
ρ(− cos θ,− sin θ) + ρ′(− sin θ, cos θ)

(ρ2 + ρ′2)1/2
, (the unit normal).

Using the right hand rule, you can verify that n is the inner unit normal when the curve
is a simple closed one such as circles and ellipses.
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The function ρ(θ) could be negative for some values of θ. For instance, ρ = 1− 2 cos θ
becomes negative on (−π/3, π/3) and consequently the curve (1−2 cos θ)(cos θ, sin θ), θ ∈
[0, 2π] develops an inner loop in the second and third quadrants, see the example below.

Example 3.11. The standard form of an ellipse is

x2

a2
+
y2

b2
= 1 ,

where a and b, a > b, are respectively its major and minor axis length. It is known that
its focus points are (c, 0), (−c, 0) where c2 = a2 − b2, c > 0. Now we would like to write
down the polar equation for the ellipse using the focus (−c, 0) as the origin. We have

x+ c = ρ cos θ, y = ρ sin θ ,

where ρ is the distance from (x, y) to (−c, 0). Plugging these relations into the equation
for the ellipse, after a lengthy but straightforward calculation we obtain

ρ(θ) =
a(1− e2)
1− e cos θ

,

where

e =

√
1− b2

a2
∈ [0, 1)

is the eccentricity of the ellipse. When (c, 0) is taken as the origin instead of (−c, 0), the
polar equation becomes

ρ(θ) =
a(1− e2)
1 + e cos θ

.

It is interesting to note that these equations describe a hyperbola when e > 1. I let you
verify these facts.

Example 3.12. Consider the limaco̧n

ρ = 1 + a cos θ , a > 0.

This regular curve θ 7→ ρ(θ)(cos θ, sin θ) is of 2π period, so its domain can be taken to be
[0, 2π]. We compute

ρ′ = −a sin θ, ρ′′ = a cos θ, ρ2 + ρ
′2 = 1 + a2 + 2a cos θ > 0 .

In particular, this is a regular curve unless a = 1. When a ∈ (0, 1), ρ is always positive.
By plotting its graph, you can see that it is a simple, (locally) convex curve containing the
origin. When a = 1, the curve is called the cardioid due to its shape. Now the magnitude
of its tangent

ρ2 + ρ
′2 = 2 + 2 cos θ
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which vanishes at θ = −π. The cardioid has a cusp at this point. When a > 1, ρ
becomes negative somewhere and the limaco.n develops an inner loop. To describe it let
us examine the typical case a = 2/

√
3. Now ρ is positive for θ ∈ (−2π/3, 2π/3) and

negative for θ ∈ (2π/3, 4π/3). Henceforth, as θ goes from −2π/3 to 2π/3, the curve runs
from the origin and back to it through the fourth quadrant and the first quadrant to make
a loop L1. After passing 2π/3, ρ(θ) becomes negative, so the curve goes again from the
fourth quadrant to the first quadrant when θ ends at 4π/3. Let the loop be L2. From

ρ(θ) = 1 +
2√
3

cos θ < 1 +
2√
3

cos(θ + π), θ ∈
(

2π

3
,
4π

3

)
,

we see that L1 is the outer loop and L2 is the inner one.

It is curious to see what the limaco̧n looks like in cartesian coordinates. In fact, we
write the polar equation as ρ− a cos θ = 1 and multiply it with ρ to get

ρ2 − aρ cos θ = ρ .

Taking square, we arrive at the equation

(x2 + y2 − ax)2 = x2 + y2 .

Thus the limaco̧n is actually described by a quartic equation.

More examples of polar curves are found in the exercise.

3.4 The Curvature of a Curve*

Among all possible parametrizations of the same geometric curve, the parametrization
by arc-length is a special one. As an application we use it to define the curvature of a
curve. This is geometric notion that is independent of the choice of parametrization. It is
natural to define it using the arc-length parametrization. We will be restricted to plane
curves in this section even though it is possible to define it for any curve in Rn.

Let γ : [0, L] → R2 be a regular plane curve parametrized by the arc-length. Its
tangent γs(s) = (xs(s), ys(s)) is a unit vector according to Theorem 3.2, the vector
n(s) = (−ys(s), xs(s)) is perpendicular to γs. We define it to be the unit normal at γ(s).
When one walks along the tangential direction, this normal points to his/her left. In
following we will use the notions

t = γs = (xs, ys) , n = (−ys, xs) .
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The signed curvature of the curve at γ(s) is defined to be

k(s) =

∣∣∣∣ xs(s) ys(s)
xss(s) yss(s)

∣∣∣∣
= xsyss − ysxss .

In the definition second derivatives of the curve are involved. Therefore, a parametric
curve has to be twice differentiable in order its signature curvature to make sense. It will
implicitly assumed throughout our discussion. Here k is viewed as a function of the arc-
length variable s, but one may also regard it as a function defined on the geometric curve,
that is, a function of γ(s). The reason it is called the signed curvature is that whenever
the direction of the curve is reversed, the sign of the curvature also changes. Indeed, we
pointed out that once we reverse the direction of the curve, the tangent vector points in
the opposite direction but the acceleration vectors, which is the second derivative, point to
the same direction. Therefore, the signed curvature which is the determinant obtained by
taking the tangent and acceleration vector as the rows changes its accordingly. In order
to define a sense of curvature solely depends on the geometric curve and in particular
independently of the direction of the parametrization, we define the curvature of the
curve at γ(s) to be the absolute value of the signed curvature, that is,

κ = |xsyss − ysxss| .

To understand the idea behind the definition we write

t = (cos θ(s), sin θ(s))

using the fact that t is a unit vector for some θ ∈ [0, 2π). Indeed, the angle θ is the angle
between the vector γs and the x-axis. Then

ts = (− sin θ(s), cos θ(s)) θ′(s) = θ′(s)n ,

which implies

k(s) = xsyss − ysxss
= < ts,n >

= θs(s) .

In other words, the signed curvature k(s) = θs(s) measures the rate of the change of
the angle at the point γ(s). The magnitude of θs(s) described how curved the curve at
this point. It has positive or negative sign according to whether the angle increases or
decreases at this point.

In the following we express the signed curvature in an arbitrary parametrization.
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Theorem 3.3. Let γ : [a, b] → R2 be a twice differentiable regular parametric curve. Its
signed curvature at γ(t) is given by

k(t) =
x′(t)y′′(t)− y′(t)x′′(t)

(x′2(t) + y′2(t))3/2
.

Proof. Let Φ be the inverse to the length function defined above in Section 2. For a
function defined on [a, b], we write

f̃(s) = f(t), t = Φ(s).

By the Chain Rule

f̃s(s) = ft(t)Φs(s) =
ft(t)√
x2t + y2t

.

Applying it to the two components of γ̃(s) = γ(t), we have

γ̃s(s) =
γt(t)√
x2t + y2t

.

Next,

γ̃ss(s) =
d

ds
γ̃s(s)

=
d

ds

γt(t)√
x2t (t) + y2t (t)

=
1√

x2t (t) + y2t (t)

(
xtt

(x2t + y2t )
1/2
− xt(xtxtt + ytytt)

(x2t + y2t )
3/2

,
ytt

(x2t + y2t )
1/2
− yt(xtxtt + ytytt)

(x2t + y2t )
3/2

)
=
xt(t)ytt(t)− yt(t)xtt(t)

(x2t (t) + y2t (t))
3/2

n(s)

= kn(s),

hence < γ̃ss(s),n(s) >= k(t) < n,n >= k(t) .

Example 3.13. Find the signed curvature of the straight line l(t) = p + tξ , p ∈
Rn, t ∈ R. We have l′(t) = ξ and l′′(t) = (0, 0). From the formula for the curvature
in the proposition above that the curvature of the straight line is equal to zero everywhere.

Example 3.14. Find the signed curvature of the circle given by the parametrization
c(t) = (R cos t, R sin t) , t ∈ [0, 2π] which runs in the counterclockwise direction. We have
c′(t) = (−R sin t, R cos t) and c′′(t) = (−R cos t,−R sin t), so

k =
(−R sin t)(−R sin t)− (R cos t)(−R cos t)

((−R sin t)2 + (R cos t)2)3/2
=

1

R
.
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We see that the larger the radius of the circle, the less its curvature. You can also check
that the signed curvature becomes −1/R in clockwise direction. The curvature of a circle
of radius R is 1/R.

In Section 3.3 we introduced the non-parametric form. Let f be a twice differentiable
function over some interval. Its signed curvature and curvature are given respectively by

k(x) =
f ′′(x)

(1 + f ′2(x))
3
2

, (the signed curvature)

and

κ(x) =
|f ′′(x)|

(1 + f ′2(x))
3
2

, (the curvature) .

Example 3.15. Find the curvature of the parabola given by the non-parametric form

y = 3x2 − 5x+ 11 , x ∈ R .

The parametric curve describing the parabola is given by

γ(x) = (x, 3x2 − 5x+ 11) .

We have

γ ′(x) = (1, 6x− 5), γ ′′(x) = (0, 6).

Therefore,

k(x) =
y′′(x)

(1 + y′2)3/2

=
6

(1 + (6x− 5)2)3/2

=
6

(36x2 − 60x+ 26)3/2
.

We see that the curvature tends to zero as |x| → ∞ .

The following result partly justifies the terminology of the curvature for a curve.

Theorem 3.4. Let γ be the regular curve in non-parametric form for some twice differ-
entiable function. It is a line segment if its curvature vanishes everywhere. It is a circular
arc if its curvature is a non-zero constant.
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Proof. Here γ(x) = (x, f(x)) for some twice differentiable function f . It is always a
regular curve since |γ ′(x)| = (1 + f

′2(x))1/2 > 0. When k ≡ 0, f ′′(x) = 0 for all x.
Integrating twice shows that f(x) = c1x+ c2 so γ(x) = (0, c2) + x(1, c1) is a straight line.

When k(x) = k0 for some non-zero k0. We have

f ′′(x) = k0(1 + f
′2)3/2 .

Writing g = f ′, we have

g′(x) = k0(1 + g2(x))3/2 ,

or
dg

(1 + g2)3/2
= k0dx .

To proceed further, let us assume f ′(a) = 0. This can always achieved by rotating the
graph which does not change the shape of the curve. Integrating both sides from a to x
yields

g(x)√
1 + g2

= k0(x− a) ,

or

f ′(x) = ± k0(x− a)√
1− k20(x− a)2

.

One more integration from a to x yields

f(x) = f(a)± 1

k0

√
1− k20(x− a)2 ,

that is,

(x− a)2 + (f(x)− f(a))2 =
1

k20
,

so the curve is an arc of a circle of radius 1/|k0| centered at (a, f(a)).

In the polar form the signed curvature and curvature are given respectively by and

k(θ) =
−ρρ′′ + 2ρ

′2 + ρ2

(ρ2 + ρ′2)3/2
(the signed curvature) ,

and

κ(θ) =

∣∣−ρρ′′ + 2ρ
′2 + ρ2

∣∣
(ρ2 + ρ′2)3/2

(the curvature) .
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3.5 Kepler’s First Law*

Consider the motion of a small planet around a large one governed by Newton’s second
law and the gravitational law of inverse square. Assuming the large planet does not move
in time and using it as the origin, the equation of motion becomes

m
d2r

dt2
= −mMg

|r|2
r

|r|
,

where m,M, g are respectively the mass of the small planet, the mass of the large planet,
gravitational constant, and r(t) = (x(t), y(t), z(t)) is the position of the small planet at
time t. Componentwise we have

d2x

dt2
=

−kx
(x2 + y2 + z2)3/2

,

d2y

dt2
=

−ky
(x2 + y2 + z2)3/2

,

d2z

dt2
=

−kz
(x2 + y2 + z2)3/2

, k = Mg.

There is a plane passing through two points r(0) and r′(0) and we can take it to be the
xy-plane. In this coordinate system z(0) = z′(0) = 0 and r(0)× r′(0) = (0, 0, a) for some
number a. We have

d

dt
r× r′ = r′ × r′ + r× r′′

= r× r′′

= −Mg

|r|3
r× r = 0 ,

which shows that the cross product r× r′ is independent of time, so r× r′ = (0, 0, a) for
all t. It means that the motion is always restricted to the xy-plane. Letting z = 0 in the
system above, we obtain a reduced system consisting of two equations with two unknowns

d2x

dt2
=

−kx
(x2 + y2)3/2

,

d2y

dt2
=

−ky
(x2 + y2)3/2

.

(3.1)

Kepler’s First Law is contained in the following statement.
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Theorem 3.5. Every periodic solution of (3.1) traces out an ellipse.

Since it is expected that the orbit is an ellipse, it is advantageous to employ the polar
form to describe the system. Set

x = ρ cos θ, y = ρ sin θ ,

where both ρ and θ are functions of time t. We have

x′ = ρ′ cos θ − ρ sin θ θ′, x′′ = ρ′′ cos θ − 2ρ′ sin θ θ′ − ρ cos θ θ
′2 − ρ sin θ θ′′ ,

y′ = ρ′ sin θθ + ρ cos θ θ′, y′′ = ρ′′ sin θ + 2ρ′ cos θ θ′ − ρ sin θ θ
′2 + ρ cos θ θ′′ .

The equations become

ρ′′ cos θ − 2ρ′ sin θ θ′ − ρ cos θ θ
′2 − ρ sin θ θ′′ =

−k cos θ

ρ2
,

ρ′′ sin θ + 2ρ′ cos θ θ′ − ρ sin θ θ
′2 + ρ cos θ θ′′ =

−k sin θ

ρ2
.

Multiplying the first equation by cos θ, the second equation by sin θ and then summing
up, we get

ρ′′ − ρθ′2 =
−k
ρ2

.

Multiplying the first equation by sin θ, multiplying the second equation by cos θ and then
subtracting, we get

2ρ′θ′ + ρθ′′ = 0 .

The last equation can be rewritten as

d

dt
(ρ2θ′) = 0 ,

which subsequently gives

θ′ =
c0
ρ2

, c0 some constant.

Now we would like to change the independent variable from t to the polar angle θ. Re-
garding ρ = ρ(θ), we have

ρ′ = ρθθ
′, ρ′′ = ρθθθ

′2 + ρθθ
′′ .

The first equation is transformed into

ρθθθ
2 + ρθθ

′′ − ρθ′2 =
−k
ρ2

.

Substituting θ′ and θ′′, we arrive at

c20
ρ4

(
ρθθ −

2ρ2θ
ρ
− ρ
)

=
−k
ρ2

.



3.5. KEPLER’S FIRST LAW* 23

Motivated by the polar form of the ellipse, we let ρ = 1/u. Using

ρθ =
−uθ
u2

, ρθθ =
−uθθ
u2

+
2u2θ
u3

,

we finally get

uθθ + u =
Mg

c20
,

which is readily solved to give

u(θ) =
Mg

c20
+ α cos θ + β sin θ, α, β some constants .

Since the motion is a periodic one, there is some θ0 at which ρ attains its extremum. If
now we rotate the coordinates so that θ0 becomes 0, we have

u′(0) = − ρ
′(0)

ρ2(0)
= 0 .

Setting u0 = u(0) and ρ0 = ρ(0) and plugging θ = 0 in the above expression for u we
readily get

α = u0 −
gm

c20
.

On the other hand, by differentiating this expression and then using u′(0) = 0, we obtain
β = 0. We have arrived at

ρ(θ) =
1

gm

c20
+

(
1

ρ0
− gm

c20

)
cos θ

=
gm

c20
× 1

1 +

(
c20

gmρ0
− 1

)
cos θ

.

Setting

e =

∣∣∣∣ c20
gmρ0

− 1

∣∣∣∣ ,
in case e ≥ 1, the dominator in the expression of ρ would vanish at some θ and ρ would
diverge to infinity approaching this angle. However, this is impossible for a periodic
motion. We conclude that e < 1. Finally we arrive at

ρ(θ) =
a(1− e2)
1± e cos θ

,

for some positive a. This is the polar equation for an ellipse. We have shown that the
Earth moves along an ellipse around the sun. Kepler’s First Law is established.
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Comments on Chapter 3.

3.1 We summarize our discussion on the various descriptions of geometric objects using
the ellipse as a prototype. Consider the ellipse with foci at (−c, 0), (c, 0), c > 0 and major
axis length a, a > c. It can be described in the following six ways.

(a) The loci of all points whose sum of distance to the two foci is equal to 2a (“the Greek
way”).

(b) The zero set of
x2

a2
+
y2

b2
= 1, b =

√
a2 − c2 .

(c) The nonparametric form: The union of the graphs of the two functions given respec-
tively by

f1(x) = b

√
1− x2

a2
, f2(x) = −b

√
1− x2

a2
, x ∈ [−a, a] .

(d) The parametric curve

γ(t) = (a cos t, b sin t) , t ∈ [0, 2π] .

(e) * The curve in arc-length parametrization:

γ̃(s) = (a cos t(s), b sin t(s)) , s ∈ [0, L] ,

where t(s) is the inverse function of

s(t) =

ˆ t

0

√
b2 + (a2 − b2) cos2 z dz , L = s(2π) .

(f) The polar equation

ρ(θ) =
a(1− e2)
1± e cos θ

, e =
c

a
, θ ∈ [0, 2π] .

The first two descriptions were discussed in Chapter 2 and the others four are in this
chapter. Each approach has its advantage and shortcoming. The proof of Kepler’s First
Law illustrates how different descriptions are used to solve the problem. Testing for more,
you may determine which one of these descriptions is the best in calculating the tangent
line or enclosed area of the ellipse.

3.2 Kepler’s discovered three laws on the motion of planets through empirical data. It
is Newton who proposed the gravitational inverse square law. To test the validity of his
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law, Newton derived Kepler’s laws as his, and this is hailed as the triumph of Newton’s
mechanics. The second and the third laws are less important, and you may google for
their statements and proofs.

3.3 The parametrization approach to curves has been extended to surfaces, hypersurfaces
and other geometric objects. The discussion is beyond this course. You will learn them
in MATH2020 Advanced Calculus II and MATH4030 Differential Geometry.

Supplementary Readings

1.5 and 2.1 in [Au]. 11.1, 11.3, 11.4, 11.6, 11.7, 13.1 and 13.2 in [Thomas] contain a
nice discussion on many interesting parametric curves.


